Unit Slide # PgText

Slide Title

Getti	ng Started	I - Introduc	tion to Econometrics
1	1	3	What's the objective?
1	2	3	Estimating economic/statistical relationships
1	3	3	Causality v. correlation
1	4	4	Doing empirical economics
1	5	6	Be a complete skeptic!
1	6	6	Art v. science
Getti	ng Started	II - Sample	Statistics & Optimization
1	1	7	Sample Statistics: data characteristics
1	2	New	Example: Anscombe's Quartet
1	3	12	Optimization: OLS = min SSRs
1	4	13	FOCs: First Order Conditions - identify solution candidates
1	5	13	SOCs: Second Order Conditions - evaluate candidates
1	6	14	Example: min SSRs (Sum Squared Residuals)
OLS/	SLR Analy	tics: Estim	ating Parameters
2	1	New	What is OLS/SLR?
2	2	19	The OLS/SLR (Simple Linear Regression) model setup
2	3	22	OLS (Ordinary Least Squares) estimation: FOCs and SOCs
2	4	25	OLS and sample statistics: Interpreting the OLS coefficients
2	5	27	Slope coefficient: A Weighted average of slopes
2	6	29	OLS predictions, residuals and SRFs
2	7	30	Properties of OLS/SLR SRFs and residuals
2	8	32	Units of measurement and estimated coefficients
			Economic significance (meaningfulness): Beta regressions
2	9	33	and elasticities
2	10	38	Examples in Excel and Stata
OLS/	SLR Asse	ssment I: G	oodness-of-fit
3	1	46	How close? Goodness-of-Fit (GOF) v. Precision/Inference
3	2	48	Bring on the ANOVA Table! (SST, SSE and SSR)
3	3	New	Goodness-of-Fit (GOF) metrics
_			GOF I: Mean Squared Error (MSE) and Root MSE
3	4	50	(RMSE)
3	5	51	GOF II: R-squared
3	6	New	Thinking about R-squared
3	7	53	Applications
2	0	E.C.	Comparing SLR models using Goodness-of-Fit (GOF)
3	8	56	metrics

OLS/I	MLR Analy	ytics: What'	s New? Not Much!
4	1	77	Introduction: MLR v. SLR
4	2	80	Comparing MLR and SLR Results: Forecasting Box Office Revenues
4	3	81	OLS: A Quick Comparison of SLR and MLR Analytics
4	4	82	Interpreting MLR Coefficients I:
4	5	82	SRFs & Marginal Predicted Effects
4	6	New	Partial Correlations
4	7	84	Endogeneity (Omitted Variable Bias/Impact) I: An Overview
OLS/S	SLR Asse	 ssment I: G	oodness-of-fit
5	1	87	Review of SLR Assessment (predicteds v. actuals)
5	2	88	R-sq shortcoming in MLR models: Just showing up!
5	3	91	A Quick Comparison of SLR and MLR Assessment – Not much that's new!
5	4	92	MLR Goodness-of-Fit: Adjusted R-squared
5	5	93	and adding and subtracting RHS variables
5	6	94	Comparing MLR Models I: Goodness-of-Fit metrics in action
OLS/I	MLR Analy	ytics II: Coll	inearity & Co.
6	1	96	Introduction: (Multi)Collinearity
6	2	97	The Collinearity Regressions
6	3	98	Multicollinearity with Two RHS Variables: Correlation and R2
6	4	99	with Three or more RHS Variables: R _/ ^2
6	5	100	Variance Inflation Factors (VIFs): Easily generate Rj^2
6	6	102	Endogeneity (Omitted Variable Bias/Impact)
6	7	102	Case I: k = 2 to k = 1
6	8	106	Case II: k to k-1: k > 2 (What's the difference?)
6	9	New	computing OVB; signing OVB
6	10	New	Simple v. Partial Correlations
OLS	Estimation	n Review and	d Inference Preview
7		New	All New
		Estimation	
7	1	151	Estimation I: Estimating the mean of the distribution
7	2	151	Random Sampling, Estimators and Estimates
7	3	152	Here's an Estimator: The Sample Mean
7	4	152	Linear and Unbiased Estimators (LUEs)
7	5	153	LUEs for the unknown mean
7	6	153	Variance of the LUEs
7	7	153	Best Linear Unbiased Estimators (BLUE)
7	8	154	LUEs are not Alone!
7	9	154	More Candidate LUEs
7	10	155	BLUE II: The optimization problem
7	11	156	BLUE III: Wrapup/Review

			Blessed estimators generate, by definition, blessed
7	12	157	estimates
7	13	158	Confidence intervals as interval estimators
7	14	158	Sample statistics as estimators
7	15	158	More Estimators: Sample variance and standard deviation
7	16	159	Even More Estimators: Sample covariance & correlation
Revie	w of State	Inference I.	pptx
7	1	162	What are your best estimates? Are you close?
7	2	162	The Tools of Inference
_	_		Distributional Assumptions: Generally required to do
7	3	163	Inference
7	4	164	Estimating the Mean of the Distribution, cont'd
7	5	164	Distributional Assumption: Assume a Normal distribution
7	6	165	Confidence Intervals I: Known variance
7	7	166	Confidence Intervals I: Known variance, cont'd
7	8	166	Confidence Intervals II: The variance of Y is now unknown
7	9	166	The Standard Error
7	10	167	t Distributions and Standard Errors
7	11	168	The t distribution looks a lot like the Normal distribution
7	12	168	The Cornerstone of Inference: The t statistic
7	13	169	Critical Values (with unknown variance)
7	14	169	The Cornerstone of Inference: The t statistic, cont'd
Davis	of Ctata	Informaci	v2 make
		Inference II	
7	1 2	170	Hypothesis Testing I: Getting started
7	3	170	Focus on Type I Error: False Rejection
7	4	170	Estimating the Mean of the Distribution: Reprise
7	5	171 171	Run the Hypothesis Test: I Run the Hypothesis Test: II
7	6		
7	7	171	The Probability of a Type I Error
		172	Selecting the Critical Values The Test & Statistical Significance
7	8	173	The Test & Statistical Significance
7	9	173	Probability Values (p values): The Easy Test
7	10 11	174 174	Rejection Rule II: p values and significance levels Equivalence of Rejection Rules: An Example
7	12	174	A Peek Ahead: p values & Statistical Significance
/	12		A F EER AHEAU. P VAIUES α STATISTICAL STYTHICATICE
SLRF	Estimation	v3 nntv	
8	1	177	SLR Models: Estimation
8	2	177	SLR Models Estimation: Those OLS estimates
8	3	177	ex Post estimates v. ex Ante estimators
8	4	178	SLR Models Estimation: Let's review notation!
8	5	179	Those SLR Conditions: SLR.1-SLR.4
8	6	180	PRFs and Linear Estimators
8	7	181	OLS Estimators are Unbiased! Who saw this coming?
8	8	183	But B1 is not Alone!
8	9	183	So many LUEs! Test your understanding!
8	10	184	OLS Estimators (B0 and B1) have Variances I
	10	104	OLO Louinatoro (Do ana Di) nave variances i

1			The BLUE Challenge:		
8	11	183	Which LUE has the smallest variance?		
8	12	185	SLR.5: Homoskedasticity		
8	13	185	Heteroskedasticity Example: Real Estate valuation		
8	14	186	OLS Estimators (B0 and B1) have Variances II		
8	15	187	MSE/RMSE and the Standard Error of the Regression		
8	16	187	MSE is an Unbiased Estimator of var(U x)		
8	17	187	Standard Errors of B1: Estimates of sd(B1)		
8	18		Onwards to Gauss, Markov, BLUE and Inference!		
The C	The Gauss-Markov Theorem v2.pptx				
8	1	202	The Gauss-Markov Theorem: OLS is BLUE		
8	2	202	The Sample Mean is BLUE		
8	3	202	What about OLS? Start with those SLR conditions		
8	4	203	We've Seen This Before!: LUEs		
8	5	203	We've Seen This Before!: Getting to BLUE		
8	6	205	The Gauss-Markov Theorem: OLS is BLUE		
8	7	206	OLS is BLUE: Some Intuition		
8	8		Onwards to Inference!		
SLR I	nference	v2.pptx			
9	1	189	SLR Models: Inference		
9	2	189	SLR Assessment II: Precision/Inference		
9	3	190	Samples Means and Inference: Review		
9	4	190	Recall those SLR Assumptions/Conditions		
9	5	190	Under those Assumptions/Conditions		
9	6	191	SLR.6: U has a Normal Distribution		
9	7	192	Distribution of the OLS Estimators (given SLR.1-SLR.6)		
9	8	New	Some Intuition? Why variance in the x's matters for std errs		
9	9	194	The t Statistic, t Distribution and Confidence Intervals		
9	10	195	SLR Inference: Hypothesis Testing		
9	11	195	p values: Hypothesis tests the easy way		
			Convergence: SLR Assessment I & II		
9	12	197	Who saw this coming?		
9	13	198	An Example: Bodyfat		
9	14		Onwards to MLR Estimation and Inference		
		OLS v2.ppt			
9	1	200	Sample Mean v. OLS: Estimation I		
9	2	200	Sample Mean v. OLS: Estimation II		
9	3	201	Sample Mean v. OLS: Estimation III		
9	4	201	Sample Mean v. OLS: Estimation IV		

MLR	Estimation	n and Infere	nce v3.pptx
10	1	212	MLR Models: Estimation & Inference
10	2	213	SLR/MLR Compare: Estimation & Inference I
10	3	213	SLR/MLR Compare: Estimation & Inference II
10	4	213	SLR/MLR Compare: Estimation & Inference III
10	5	214	SLR/MLR Compare: Estimation & Inference IV
10	6	214	SLR/MLR Compare: Estimation & Inference V
10	7	215	SLR & MLR Standard Errors: Not so different after all!
10	8	216	MLR Standard Errors: An Example
MLR	Inference	II.pptx	
10	1	218	MLR Inference II: Convergence II
10	2	218	Convergence II: t Stats and Incremental Goodness-of-Fit
10	3	219	Convergence II – An example: bodyfat I
10	4	219	Convergence II – Another example: bodyfat II
10	5	220	Convergence II: and WhatsNewx
10	6	221	Comparing MLR Models II: t stats and adjusted R2
10	7	221	More about t stats and adjusted R2
10	8		onwards to Heteroskedasticity
Heter	oskedasti	city & Robu	st Standard Errors v3.pptx
8a	1	224, 227	Recap I: Those SLR's, MLR's, LUEs and BLUE
8a	2	231	II: MSE's, RMSE's, and Standard Errors
8a	3	185	III: Homoskedasticity v. Heteroskedasticity
8a	4	224, 229	Heteroskedasticity: Learning from the Sample Mean Estimator
8a	5	225, 230	Bogus Standard Errors & Weighted Least Squares
8a	6	226, 236	Robust standard errors to the rescue!
8a	7	234	, robust in action! An example
Dumr	my Variab	les Introduct	tion v3.pptx
11	1	239	Dummy Variables: Introduction
11	2	239	What's a dummy? (binary) indicator variables
11	3	239	Dummies revisited we've been here before!
11	4	new	and on the LHS Linear Probability Models (LPMs)
11	5	240	Useful Dummies I: Estimating Impact/Bias
11	6	241	Useful Dummies II: Quieting the endogeneity critics
11	7	242	Dummies in Action: Bring on the Fixed Effects!
11	8	242	Dummies in Action: NFL ticket prices and New Stadiums
11	9		Dummy Variables: You want more examples?
	mies in Ac	tion: Examp	
11	1	245	The Wage Gap
11	2	262	Sovereign Debt Ratings and Fixed Effects
11	3	268	Death Penalty Econometrics
	4	new	NFL Ticket Prices

F Sta	F Stats and F Tests v3.pptx			
12	1	275	More Testing: F Statistics and F Tests	
12	2	new	Why bother? Testing a joint Null Hypothesis	
12	3	214	Hypothesis Testing and t Tests: Review	
12	4	214	t Tests: Testing single parameters/restrictions	
12	5	276	F tests: Testing multiple parameters & linear restrictions	
12	6	276	Runnng the F Tests: Some intuition	
12	7	279	The F Statistic and three Goodness of Fit metrics	
12	8	277	Running the F Test: More formally	
12	9	278	Some F Distributions	
12	10	276	Running F Tests in Stata is a Snap!	
12	11	280	Testing a Single Parameter: F = t^2	
12	12	281	an example	
12	13	280	F = t^2: Who Knew? Well, You Knew!	
12	14	286	Babies and Bathwater	
12	15	283	Reported F Stats in OLS Output	
12	16	287	F Stats, adj R^2 and t Stats	
12	17	288	Adding and Dropping RHS Variables	
12	18	new	It's a Wrap!	
F Tes	F Tests continued v1.pdf			
12	1	291	Playing with Bodyfat: F Tests in Action	
12	2	295	F Tests the Easy Way	
12	3	300	More about Babies and Bathwater	
12	4	301	F Stats, Adj R^2 and MSE	